Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If a is $A$ symmetric matrix and $B$ is a skew-symmetrix matrix such that $A + B = \begin{bmatrix}2&3\\ 5&-1\end{bmatrix} $, then AB is equal to :

JEE MainJEE Main 2019Matrices

Solution:

$A = A' , B = - B'$
$ A + B = \begin{bmatrix}2&3\\ 5&-1\end{bmatrix} $ ....(1)
$ A' + B' = \begin{bmatrix}2&5\\ 3 &-1\end{bmatrix} $
$ A -B = \begin{bmatrix}2&5\\ 3&-1\end{bmatrix} $ .....(2)
After adding Eq. (1) & (2)
$ A = \begin{bmatrix}2&4\\ 4 &-1\end{bmatrix} , B = \begin{bmatrix}0&-1\\ 1 &0\end{bmatrix} $
$ AB = \begin{bmatrix}4&-2\\ -1 &-4\end{bmatrix} $