Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A is a symmetric and B is a skew symmetric matrix, then which of the following is correct?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $A$ is a symmetric and $B$ is a skew symmetric matrix, then which of the following is correct?
NTA Abhyas
NTA Abhyas 2022
A
$ABA^{T}$ is a symmetric matrix
B
$AB^{T}+BA^{T}$ is a symmetric matrix
C
$\left(A + B\right)\left(A - B\right)$ is a skew symmetric matrix
D
$\left(A + I\right)\left(B - I\right)$ is a skew symmetric matrix
Solution:
$A^T=A, B^T=-B$
$\left(A B A^T\right)^T=\left(A^T\right)^T B^T A^T=-A B A^T$ (Skew symmetric)
$\left(A B^T+B A^T\right)^T=\left(A B^T\right)^T+\left(B A^T\right)^T$
$=B A^T+A B^T$
$=B A-A B=B A^T+A B^T$ (Symmetric)
$[(A+B)(A-B)]^T=(A-B)^T(A+B)^T$
$=\left(A^T-B^T\right)\left(A^T+B^T\right)=(A+B)(A-B)$ (Symmetric)
$[(A+I)(B-I)]^T=[B-I])^T([A+I]^T$
$=\left[B^T-I^T\right]\left[A^T+I^T\right]$
$=[-B-I][A+I]$ (neither symmetric nor skew symmetric)