Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ is a square matrix such that $A^{2}=I$ then $(A-I)^{3}+(A+I)^{3}-7 A$ s equal to _______.

Gujarat CETGujarat CET 2020

Solution:

$(A-I)^{3}+(A+I)^{3}-7 A$
$=A^{3}-I-3 A^{2}+3 A+A^{3}+I+3 A^{2}+3 A-7 A$
$=2 A^{3}-A$
$=A\left(2 A^{2}-I\right)$
$=A(2 I-I)=A$