Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ is a square matrix of order $3$ and if $ \det \,(A)=3, $ then $ \det \,[adj\,\,\{adj\,(adj\,A)\}] $ is equal to

J & K CETJ & K CET 2010Determinants

Solution:

Given, det $ (A)=3 $ and $ n=3 $
(order of A) Now, adj
$ (adj\,A)=|A{{|}^{n-2}}A $
$ ={{(3)}^{3-2}}\,A $
$ =3\,A $
$ adj\,\,\{adj\,\,(adjA)\}=adj\,\,(3A) $
$ ={{3}^{n-1}}\,adj\,A $
$ =9\,adj\,A $ $ |adj\,\{adj\,\,(adjA)\}\,=|9\,adj\,A| $
$ =9|adj\,A| $
$ =9|A{{|}^{n-1}} $
$ =9{{(3)}^{3-1}} $
$ =9\times 9=81 $