Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ is a skew symmetric matrix and $n$ is an even positive integer, then $A^n$ is a

Matrices

Solution:

Given $A' = -A \Rightarrow \left(A'\right)^{n} = \left(-A\right)^{n}$
$ \Rightarrow \left(A^{n}\right)' = \left(\left(-1\right)A\right)^{n} =\left(-1\right)^{n}A^{n} $
$ \Rightarrow \left(A^{n}\right)' = A^{n}$ ($\because $ n is even)
$ \Rightarrow A^{n} $ is a symmetric matrix.