Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a$ is a root of the equation $x^2 - 3x +1 = 0$ , then the value of $\frac{a^{3}}{a^{6}+1}$ is

KEAMKEAM 2013Complex Numbers and Quadratic Equations

Solution:

Given, $a$ is a root of the equation
$x^{2}-3 x+1=0$
$\therefore \, a^{2}-3 a+1=0$
$\Rightarrow \, a^{2}+1=3 a$
$\Rightarrow \, a+\frac{1}{a}=3\,\,\,\,\,\,\dots(i)$
Now $\frac{a^{3}}{a^{6}+1}=\frac{1}{a^{3}+\frac{1}{a^{3}}}$
$=\frac{1}{\left(a+\frac{1}{a}\right)\left(a^{2}+\frac{1}{a^{2}}-1\right)}$
$=\frac{1}{\left(a+\frac{1}{a}\right)\left\{\left(a+\frac{1}{a}\right)^{2}-3\right\}}$
$=\frac{1}{3\{9-3\}}=\frac{1}{18}$ [From Eq. (i)]