Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If a hyperbola passes through the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$ and its transverse and conjugate axes coincide with the major and minor axes of the ellipse and product of their eccentricities be 1, then the equation of hyperbola is

Conic Sections

Solution:

Given ellipse is $\frac{x^{2}}{25} +\frac{y^{2}}{16} = 1 $
$ \therefore b^{2} = a^{2} \left(1-e^{2}\right) $
$\Rightarrow \frac{16}{25} = 1-e^{2} $
$ \Rightarrow e^{2}= \frac{9}{25}$
Let equation of hyperbola be
$ \frac{x^{2}}{a'^{2}}-\frac{y^{2}}{b'^{2}} = 1 \quad...\left(1\right)$
$ \therefore a'^{2}+b'^{2}= a'^{2}e'^{2} $
Since $e\times e' =1$
$\Rightarrow e' = \frac{5}{3} $
$ \Rightarrow a'^{2}+b'^{2} = \frac{25}{9}a'^{2} $
$ \Rightarrow 9b'^{2} = 16a'^{2}\quad...\left(2\right)$
also coordinates of focus of ellipse are $\left(\pm ae, 0\right) = \left( \pm3, 0\right)$
$\therefore $ hyperbola passes through $\left(\pm 3, 0\right)$
$ \therefore \frac{9}{a'^{2}} = 1 $
$ \Rightarrow a' = 9 $
$\Rightarrow a' = 3 \left(from \left(1\right)\right)$
from $ \left(ii\right) 9b'^{2}=16a'^{2}$
$ \Rightarrow b'^{2} = 16$
$\Rightarrow b' = 4$
$ \therefore $ equation of hyperbola is $\frac{x^{2}}{9} - \frac{y^{2}}{16 } = 1$