Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}e^{t}&e^{t} \cos t&e^{-t}\sin t\\ e^{t}&-e^{t} \cos t -e^{-t}\sin t&-e^{-t} \sin t+ e^{-t} \cos t\\ e^{t}&2e^{-t} \sin t&-2e^{-t} \cos t\end{bmatrix} $ Then $A$ is -

JEE MainJEE Main 2019Determinants

Solution:

$\left|A\right| = e^{-t} \begin{vmatrix}1&\cos t&\sin t\\ 1&-\cos t -\sin t&-\sin t + \cos t\\ 1&2\sin t&-2 \cos t\end{vmatrix} $
$= e^{-t} \left[5 \cos^{2} t + 5\sin^{2 }t\right] \forall t \in R $
$= 5e^{-t} \ne0 \forall t \in R $