Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a=\displaystyle \int _{0}^{1}\frac{c o s \left(sin x\right)}{sec ⁡ x}dx,$ then the value of $a^{2}+\left(c o s\right)^{2}\left(sin 1\right)$ is equal to

NTA AbhyasNTA Abhyas 2020Integrals

Solution:

$a =\int_{0}^{1} \cos (\sin x) \cos x d x$
Let $\sin x= t$
$\Rightarrow \cos x d x = dt$
$\therefore a =\int_{0}^{\sin 1} \cos t dt =(\sin t)_{0}^{\sin 1}$
$=\sin (\sin 1)-\sin 0$
$=\sin (\sin 1)$
$\therefore a ^{2}+\cos ^{2}(\sin 1)=\sin ^{2} \theta+\cos ^{2} \theta=1 ;(\theta=\sin 1)$