Q.
If $A=\begin{bmatrix}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}$, then the number of values of $\alpha$ $\in(0, \pi)$ satisfying $A+A^{T}=I$, is
[$I$ is an identity matrix of order $2$ and $P^{T}$ denotes transpose of matrix $P $.]
Matrices
Solution: