Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ A=\left[ \begin{matrix} x & -2 \\ 3 & 7 \\ \end{matrix} \right] $ and $ {{A}^{-1}}=\left[ \begin{matrix} \frac{7}{34} & \frac{1}{17} \\ \frac{-3}{34} & \frac{2}{17} \\ \end{matrix} \right] $ ,then the value of $x$ is

KEAMKEAM 2010Determinants

Solution:

Given matrix is $ A=\left[ \begin{matrix} x & -2 \\ 3 & 7 \\ \end{matrix} \right] $
$ \therefore $ $ |A|=7x+6 $
$ \therefore $ $ {{A}^{-1}}=\left[ \begin{matrix} \frac{7}{7x+6} & \frac{2}{7x+6} \\ \frac{-3}{7x+6} & \frac{x}{7x+6} \\ \end{matrix} \right] $
Comparing it with given inverse matrix $ {{A}^{-1}}=\left[ \begin{matrix} \frac{7}{34} & \frac{1}{17} \\ \frac{-3}{24} & \frac{2}{17} \\ \end{matrix} \right], $ we get $ \frac{7}{7x+6}=\frac{7}{34} $
$ \Rightarrow $ $ x=4 $