Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, x, y \in R , \omega \neq 1$, is a cube root of unity and $(a+b \omega)^7=x+y \omega$, then $(b+a \omega)^7$ equals

Complex Numbers and Quadratic Equations

Solution:

Solution: Taking conjugate, we get
$\left(a+b \omega^2\right)^7 =x+y \omega^2$
$ \Rightarrow\left(a \omega^3+b \omega^2\right)^7=x \omega^3+y \omega^2 $
$\omega^{14}(a \omega+b)^7 =\omega^2(x \omega+y) $
$\Rightarrow (a \omega+b)^7 =x \omega+y$