Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a,b\in R$ satisfy the equation $a^{2}+4b^{2}-4=0,$ then the minimum value of $\left(2 a + 3 b\right)$ will be

NTA AbhyasNTA Abhyas 2022

Solution:

Given equation is $\frac{a^{2}}{4}+b^{2}=1$
Putting $a=2\cos \theta ,b=\sin⁡\theta $ , we get,
$2a+3b$ $=2\left(2 \cos \theta \right)+3\left(\sin ⁡ \theta \right)=4\cos\theta +3\sin\theta $
$\Rightarrow $ Minimum value $=-\sqrt{4^{2} + 3^{2}}=-5$