Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a,b,c∈ R+ such that a+b+c=27 , then the maximum value of a2b3c4 is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a,b,c\in R^{+}$ such that $a+b+c=27$ , then the maximum value of $a^{2}b^{3}c^{4}$ is equal to
NTA Abhyas
NTA Abhyas 2020
Sequences and Series
A
$2^{8} \cdot 3^{10}$
50%
B
$2^{9} \cdot 3^{11}$
25%
C
$2^{10} \cdot 3^{12}$
25%
D
$2^{11} \cdot 3^{13}$
0%
Solution:
Consider nine numbers $\frac{a}{2},\frac{a}{2},\frac{b}{3},\frac{b}{3},\frac{b}{3},\frac{c}{4},\frac{c}{4},\frac{c}{4},\frac{c}{4}$
Using $AM\geq GM$ , we get,
$\frac{\frac{a}{2} + \frac{a}{2} + \frac{b}{3} + \frac{b}{3} + \frac{b}{3} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} + \frac{c}{4} }{9}\geq \left(\left(\frac{a}{2}\right)^{2} \left(\frac{b}{3}\right)^{3} \left(\frac{c}{4}\right)^{4}\right)^{\frac{1}{9}}$
$\Rightarrow \frac{a + b + c}{9}\geq \left(\frac{a^{2} b^{3} c^{4}}{2^{2} 3^{3} 4^{4}}\right)^{\frac{1}{9}}$
$\Rightarrow \left(\frac{27}{9}\right)^{9}\geq \frac{a^{2} b^{3} c^{4}}{2^{2} 3^{3} 2^{8}}$
$\Rightarrow a^{2} b^{3} c^{4} \leq 2^{10} \cdot 3^{12}$