Q. If $a, b, c$ are the sides of a $\triangle A B C$ opposite angles $A, B, C$ respectively, and $\Delta=\begin{vmatrix}a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos (B-C) \\ c \sin A & \cos (B-C) & 1\end{vmatrix}$, then $\Delta$ equals
Determinants
Solution: