Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c$ are in $G.P.$ and $ x,y $ are arithmetic mean of $a, b$ and $b, c$ respectively, then $ \frac{1}{x}+\frac{1}{y} $ is equal to

KEAMKEAM 2009Sequences and Series

Solution:

Given, $ {{b}^{2}}=ac,x=\frac{a+b}{2} $ and $ y=\frac{b+c}{2} $
$ \therefore $ $ \frac{1}{x}+\frac{1}{y}=\frac{2}{a+b}+\frac{2}{b+c} $
$=\frac{2(2b+a+c)}{ab+{{b}^{2}}+bc+ac} $
$=\frac{2(2b+a+c)}{ab+2{{b}^{2}}+bc} $
$=\frac{2(2b+a+c)}{b(2b+a+c)} $
$=\frac{2}{b} $