Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b, c are in A.P. and a2, b2, c2 are in G.P. such that a < b < c and a + b + c = (3/4), then the value of a is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a, b, c$ are in $A.P$. and $a^2, b^2, c^2$ are in $G.P$. such that $a < b < c $ and $a + b + c = \frac{3}{4}$, then the value of $a$ is :
JEE Main
JEE Main 2018
Sequences and Series
A
$\frac{1}{4} - \frac{1}{ 4 \sqrt{2}}$
13%
B
$\frac{1}{4} - \frac{1}{3 \sqrt{2}}$
24%
C
$\frac{1}{4} - \frac{1}{2 \sqrt{2}}$
40%
D
$\frac{1}{4} - \frac{1}{\sqrt{2}}$
23%
Solution:
Given $a, b, c$ in $AP$
$\Rightarrow 2 b=a+c\,\,\,\,\,\,\,(1)$
And $a^{2}, b^{2}, c^{2}$ in GP
$\Rightarrow b^{4}=a^{2} c^{2} $
$\Rightarrow b^{2}=\pm a c\,\,\,\,\,\,\,(2)$
Taking $b^{2}=-a c\,\,\,\,\,\,\,$(From Eq. (1))
$\left(\frac{a+c}{2}\right)^{2} =-a c$
$a^{2}+c^{2}+2 \,a c =-4 \,a c $
$ a^{2}+c^{2}+6\, a c =0 \,\,\,\,\,\,\,(3)$
$a+b+c =\frac{3}{4}$(Given)
$\Rightarrow \frac{a+c}{2}+(a+c) =\frac{3}{4} \,\,\,\,\,\,\,$(From Eq. (1))
$ \Rightarrow a+c =\frac{1}{2} \,\,\,\,\,\,\,(4)$
$\Rightarrow a^{2}+c^{2} =\frac{1}{4}-2 \,a c \,\,\,\,\,\,\,$(Squaring above Eq. (4))
$ \frac{1}{4}-2 \,a c+6\, a c =0$ (From Eq. (3))
$ \Rightarrow a c =\frac{-1}{16}\,\,\,\,\,\,\,(5)$
$\Rightarrow b^{2} =\frac{1}{16} $
$\Rightarrow b=\frac{1}{4}, \frac{-1}{4} $
$\Rightarrow a\left(\frac{1}{2}-a\right) =\frac{-1}{16} $
$\Rightarrow a^{2}-\frac{a}{2}-\frac{1}{16}=0 \,\,\,\,\,\,\,$(From Eq. (1) and Eq. (5))
$\Rightarrow a=\frac{\frac{1}{2} \pm \sqrt{\frac{1}{4}+\frac{1}{4}}}{2}=\frac{1}{4} \pm \frac{1}{2 \sqrt{2}}$
$b > a \Rightarrow a=\frac{1}{4}-\frac{1}{2 \sqrt{2}}$