Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c$ are cube roots of unity, then $\begin{vmatrix}e^{a} & e^{2 a} & e^{3 a}-1 \\ e^{b} & e^{2 b} & e^{3 b}-1 \\ e^{c} & e^{2 c} & e^{3 c}-1\end{vmatrix}$ is equal to

ManipalManipal 2014

Solution:

$\Delta =\begin{vmatrix}e^{a} & e^{2 a} & e^{3 a} \\ e^{b} & e^{2 b} & e^{3 b} \\ e^{c} & e^{x c} & e^{3 c}\end{vmatrix}-\begin{vmatrix}e^{a} & e^{2 a} & 1 \\ e^{b} & e^{2 b} & 1 \\ e^{c} & e^{x c} & 1\end{vmatrix}$
$=e^{a} \cdot e^{b} \cdot e^{c}\begin{vmatrix}1 & e^{a} & e^{2 a} \\ 1 & e^{b} & e^{2 b} \\ 1 & e^{c} & e^{2 c}\end{vmatrix}+\begin{vmatrix}e^{a} & 1 & e^{2 a} \\ e^{b} & 1 & e^{2 b} \\ e^{c} & 1 & e^{2 c}\end{vmatrix}$
$=e^{(a+ b+ c)}\begin{vmatrix}1 & e^{a} & e^{2 a} \\ 1 & e^{b} & e^{2 b} \\ 1 & e^{c} & e^{2 c}\end{vmatrix}-\begin{vmatrix}1 & e^{a} & e^{2 a} \\ 1 & e^{b} & e^{2 b} \\ 1 & e^{c} & e^{2 c}\end{vmatrix}$
$=\left(e^{a +b+ c}-1\right)\begin{vmatrix}1 & e^{a} & e^{2 a} \\ 1 & e^{b} & e^{2 b} \\ 1 & e^{c} & e^{x c}\end{vmatrix}$
$=0$
$(\because a +b +c=0)$