Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A, B, C$, are angles of $\triangle A B C$ and $\tan \frac{A}{2}, \tan \frac{B}{2}, \tan \frac{C}{2}$ are in H.P., then the minimum value of $\cot \frac{B}{2}$ is

Sequences and Series

Solution:

$ \cot \frac{ A }{2} \cdot \cot \frac{ B }{2} \cdot \cot \frac{ C }{2}=\cot \frac{ A }{2}+\cot \frac{ B }{2}+\cot \frac{ C }{2}$
Since, $\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2}$ are in A.P. $\Rightarrow \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}=3 \cot \frac{B}{2}$ $\cot \frac{ A }{2} \cdot \cot \frac{ C }{2}=3$
ApplyA.M. $\geq$ G.M.
$\frac{\cot \frac{ A }{2}+\cot \frac{ C }{2}}{2} \geq \sqrt{\cot \frac{ A }{2} \cot \frac{ C }{2}}$
Hence, $\cot \frac{B}{2} \geq \sqrt{3}$.