Thank you for reporting, we will resolve it shortly
Q.
If $a, b, c$ and $d$ are four positive real numbers such that $a b c d=1$ then minimum value of $(1+a)(1+b)(1+c)(1+d)$ is
Sequences and Series
Solution:
$ 1+ a \geq 2 \sqrt{ a } $
$1+ b \geq 2 \sqrt{ b } $
$1+ c \geq 2 \sqrt{ c }$
$1+ d \geq 2 \sqrt{ d }$
Now, $(1+a)(1+b)(1+c)(1+d) \geq 16 \sqrt{a b c d}$
$(1+a)(1+b)(1+c)(1+d) \geq 16$.