Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b, c>0$ and $x, y, z \in R$, then the determinant $\begin{vmatrix}\left(a^x+a^{-x}\right)^2 & \left(a^x-a^{-x}\right)^2 & 1 \\ \left(b^y+b^{-y}\right)^2 & \left(b^y-b^{-y}\right)^2 & 1 \\ \left(c^z+c^{-z}\right)^2 & \left(c^z-c^{-z}\right)^2 & 1\end{vmatrix}$ is equal to -

Determinants

Solution:

$C_1 \rightarrow C_1-C_2$