Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a, b$ are natural numbers such that $2013+a^{2}=b^{2}$, then the minimum possible value of $a b$ is

KVPYKVPY 2013

Solution:

Given, $2013+a^{2}=b^{2}$
$\Rightarrow b^{2}-a^{2}=2013$
$\Rightarrow (b-a)(b+a)=3 \times 11 \times 61$
$a b$ is minimum.
When $b-a=33$ and $b+a=61$
On solving, we get $a=14$ and $b=47$
$\therefore$ Minimum value of $a b=14 \times 47=658$