Q. If $\overrightarrow{a} ,\overrightarrow{b}$ and $\overrightarrow{c}$ be three non-zero and non-coplanar vectors and $\overrightarrow{p} ,\overrightarrow{q}$ and $\overrightarrow{r} $ be three vectors given by $\overrightarrow{p} =\overrightarrow{a}+ \overrightarrow{b}-2\,\overrightarrow{c}, \overrightarrow{q} =3\,\overrightarrow{a}-2\, \overrightarrow{b}+\overrightarrow{c}, $ and $ \overrightarrow{r} =\overrightarrow{a}- 4\, \overrightarrow{b}+2\,\overrightarrow{c} .$ If the volume of the parallelepiped determined by $\overrightarrow{a}, \overrightarrow{b}$ and $\overrightarrow{c}$ is $V_1$and that of the parallelopiped determined by $\overrightarrow{p}, \overrightarrow{q}$ and $\overrightarrow{r}$ is $V_2$ then $V_2:V_1$ is
Vector Algebra
Solution: