Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If hata, hatb and hatc are unit vectors satisfying hata-√3 hatb+ hatc= vec0, then the angle between the vectors hata and hatb
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\hat{a}, \hat{b}$ and $\hat{c}$ are unit vectors satisfying $\hat{a}-\sqrt{3}\hat{b}+\hat{c}=\vec{0},$ then the angle between the vectors $\hat{a}$ and $\hat{b}$
JEE Main
JEE Main 2013
Vector Algebra
A
$\frac{\pi}{4}$
15%
B
$\frac{\pi}{3}$
31%
C
$\frac{\pi}{6}$
36%
D
$\frac{\pi}{2}$
18%
Solution:
Let angle between $\hat{a}$ and $\hat{c}$ be $\theta$ .
Now, $\hat{a}-\sqrt{3}\hat{b}+\hat{c} =\overrightarrow{0}$
$\Rightarrow \left(\hat{a}+\hat{c}\right)=\sqrt{3}\hat{b}$
$\Rightarrow \left(\hat{a}+\hat{c}\right)\cdot \left(\hat{a}+\hat{c}\right)=3\left(\hat{b}.\hat{b}\right)$
$\Rightarrow \hat{a.}\hat{a}+\hat{a}.\hat{c}+\hat{c}.\hat{a}+\hat{c}.\hat{c}=3\times1$
$\Rightarrow 1+2\,cos\,\theta+1=3$
$\Rightarrow cos\,\theta =\frac{1}{2} \Rightarrow \theta=\frac{\pi}{3}$