Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\hat{a}, \hat{b}$ and $\hat{c}$ are unit vectors satisfying $\hat{a}-\sqrt{3} \hat{b}+\hat{c}={0}$, then the angle between the vectors $\hat{a}$ and $\hat{c}$ is

Vector Algebra

Solution:

$|\hat{a}+\hat{c}|^2=|\sqrt{3} \hat{b}|^2 $
$1+1+2 \cos \theta=3$
where $\theta=$ angle between $\hat{a}$ and $\hat{c}$
$\Rightarrow \cos \theta=\frac{1}{2}$
So, $\theta=\frac{\pi}{3}$