Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\overrightarrow{ a }, \overrightarrow{ b }$ and $\overrightarrow{ c }$ are unit coplanar vectors, then the scalar triple product $[2 \overrightarrow{ a }-\overrightarrow{ b } 2 \overrightarrow{ b }-\overrightarrow{ c } 2 \overrightarrow{ c }-\overrightarrow{ a }]$ is

IIT JEEIIT JEE 2000Vector Algebra

Solution:

If $\overrightarrow{ a }, \overrightarrow{ b }, \overrightarrow{ c }$ are coplanar vectors, then $2 \overrightarrow{ a }-\overrightarrow{ b }, 2 \overrightarrow{ b }-\overrightarrow{ c }$ and $2 \overrightarrow{ c }-\overrightarrow{ a }$ are also coplanar vectors.
i.e. $[2 \overrightarrow{ a }-\overrightarrow{ b } 2 \overrightarrow{ b }-\overrightarrow{ c } 2 \overrightarrow{ c }-\overrightarrow{ a }]=0$