Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a, b and c are real and x3-3b2x+2c3 is divisible by (x-a) and (x-b), then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If a, b and c are real and $ {{x}^{3}}-3{{b}^{2}}x+2{{c}^{3}} $ is divisible by $ (x-a) $ and $ (x-b), $ then
Jamia
Jamia 2013
A
$ a=-b=-c $
B
$ a=2b=2c $
C
$ 4{{b}^{2}}=ac $
D
None of these
Solution:
As $ f(x)~={{x}^{3}}-3{{b}^{2}}x+2{{c}^{2}} $ is divisible by $ (x-a) $ and $ (x-b) $ . Now, $ f(a)=0 $ $ \Rightarrow $ $ {{a}^{3}}-3{{b}^{2}}a+2{{c}^{3}}=0 $ ...(i) and $ f(b)=0 $ $ \Rightarrow $ $ {{b}^{3}}-3{{b}^{3}}+2{{c}^{3}}=0 $ ...(ii) From Eq. (ii), $ b=c $ On putting $ b=c $ in Eq. (i), we get $ {{a}^{3}}-3a{{b}^{2}}+2{{b}^{3}}=0 $ $ \Rightarrow $ $ (a-b)({{a}^{2}}+ab-2{{b}^{2}}\}=0 $ $ \Rightarrow $ $ a=b $ or $ {{a}^{2}}+ab=2{{b}^{2}} $ Thus, $ a=b=c $ or $ {{a}^{2}}+ab=2{{b}^{2}} $ and $ b=c $ Therefore, $ {{a}^{2}}+ab=2{{b}^{2}} $ and $ b=c $ is equivalent to $ a=-2b=-2c $