$a. b .=a . c \Rightarrow a .(b-c)=0 $
$\Rightarrow a=0$ or $b-c=0$ or $ a \perp(b-c)$
$\Rightarrow a=0 $ or $ b=c $ or $a \perp(b-c) \ldots$ (1)
Also $ a \times b=a \times c \Rightarrow a \times(b-c)=0$
$\Rightarrow a=0 $ or $ b-c=0$ or $ a \|(b-c) $
$\Rightarrow a=0$ or $b=c$ or $a \|(b-c) \ldots$(2)
Observing to $(1)$ and $(2)$ we find that
$a=0$ or $b=c$