Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $( a + b ) \cdot( a - b )=8$ and $| a |=8| b |$, then

Vector Algebra

Solution:

Given, $(a+b) \cdot(a-b)=8$ and $|a|=8|b|$
$\Rightarrow a \cdot a-a \cdot b+b \cdot a-b \cdot b=8$
$\Rightarrow |a|^2-|b|^2=8 \left(\because a \cdot a=|a|^2\right.$ anda $\left.\cdot b=b \cdot a\right)$
$\Rightarrow (8| b |)^2-| b |^2=8$
$\Rightarrow 63|b|^2=8 ($ given, $|a|=8|b|)$
$\Rightarrow |b|=\sqrt{\frac{8}{63}}=\frac{2}{3} \sqrt{\frac{2}{7}}$
Also, $|a|=8|b|=8\left(\frac{2}{3} \sqrt{\frac{2}{7}}\right)=\frac{16}{3} \sqrt{\frac{2}{7}} .$