Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a > b > 0, Sec^{-1} \left(\frac{a+b}{a-b} \right)= 2 \; Sin^{-1}x $ then $x = $ _____

KCETKCET 2010Inverse Trigonometric Functions

Solution:

If $a>b>0, \sec ^{-1}\left(\frac{a+b}{a-b}\right)=2 \sin ^{-1} x$
$\Rightarrow \cos ^{-1}\left(\frac{a-b}{a+b}\right)=2 \sin ^{-1} x$
$\Rightarrow \cos ^{-1}\left(\frac{1-\frac{b}{a}}{1+\frac{b}{a}}\right)=2 \sin ^{-1} x$
$\Rightarrow \cos ^{-1}\left\{\frac{1-(\sqrt{b / a})^{2}}{1+(\sqrt{b / a})^{2}}\right\}=2 \sin ^{-1} x$
$\Rightarrow 2 \tan ^{-1}(\sqrt{b / a})=2 \sin ^{-1} x$
$\left[\because 2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\right]$
$\Rightarrow \sin ^{-1}\left(\frac{\sqrt{b}}{\sqrt{a+b}}\right)=\sin ^{-1} x$
$\left[\because \tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right]$
$\Rightarrow x=\sqrt{\frac{b}{a+b}}$