Given, $| a |=| b |=1$ and $\theta=\pi / 3$
Now, $| a + b |^{2} =| a |^{2}+| b |^{2}+2| a || b | \cos \theta$
$=1^{2}+1^{2}+2 \times 1 \times 1 \times \cos \frac{\pi}{3}$
$=1+1+2 \times \frac{1}{2}=1+1+1=3$
$\therefore | a + b | =\sqrt{3}$
$\therefore | a + b | > 1$