Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ and $B$ are square matrices of same order such that $\left|\right.A\left|\right.=\left|\right.B\left|\right.=1$ and $A\left(\right.adjA+adjB\left.\right)=B$ .
Then the value of $\left|\right.A+B\left|\right.$ is

NTA AbhyasNTA Abhyas 2022

Solution:

$A\left(\right.adjA+adjB\left.\right)=B$
$\left|\right.A\left|\right.I+A\cdot adj\left(\right.B\left.\right)=B$
$\left(\right.I+Aadj\left(\right.B\left.\right)\left.\right)B=B^{2}$
$B+A\cdot \left|\right.B\left|\right.I=B^{2}$
$B+A=B^{2}$
$\left|\right.B+A\left|\right.=\left|\right.B\left|\right.^{2}=1$