Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ and $B$ are non-singular matrices of order $3\times 3,$ such that $A=\left(adj B\right)$ and $B=\left(adj A\right)$ , then $det\left(A\right)+det\left(B\right)$ is equal to (where $det\left(\right.M\left.\right)$ represents the determinant of matrix $M$ and $adjM$ represents the adjoint matrix of matrix $M$ )

NTA AbhyasNTA Abhyas 2020Matrices

Solution:

$A=adjB=adj\left(adj A\right)=\left|A\right|A$
$\Rightarrow \left|A\right|=\left|A\right|^{4}\Rightarrow \left|A\right|=1\Rightarrow \left|B\right|=1$
Hence, $\left|A\right|+\left|B\right|=2$