Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ A$ and $B$ are matrices and $B = ABA^{-1}$ then the value of $(A + B) (A - B)$ is

VITEEEVITEEE 2016

Solution:

$B = ABA ^{-1}($ Given $)$
But $B = BAA ^{-1}$
$\therefore ABA ^{-1}= BAA ^{-1}$
$ \Rightarrow AB = BA$
Now $( A + B )( A - B )$
$= A ^{2}- AB + BA - B ^{2}$
$= A ^{2}- AB + AB - B ^{2} $
$[\because AB = BA ]$
$= A ^{2}- B ^{2}$
$\therefore ( A + B )( A - B )= A ^{2}- B ^{2}$