Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}\alpha&\beta\\ \gamma&\alpha\end{bmatrix}$, then Adj. A is equal to :

Determinants

Solution:

Let $A = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$
$c_{11} = \delta , c_{12} = -\gamma, c_{21} = - \beta, c_{22} = \alpha$
$ \therefore \text{adj}A = \begin{bmatrix}\delta&-\gamma\\ -\beta&\alpha\end{bmatrix}' = \begin{bmatrix}\delta&-\beta\\ -\gamma&\alpha\end{bmatrix}$