Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix}\alpha&0\\ 1&1\end{bmatrix}$ and $B \begin{bmatrix}1&0\\ 3&1\end{bmatrix} $the value of $\alpha$ for which $A^{2}=B$ is

Matrices

Solution:

We have $A^{2} \begin{bmatrix}\alpha&0\\ 1&1\end{bmatrix}\begin{bmatrix}\alpha&0\\ 1&1\end{bmatrix}=\begin{bmatrix}\alpha^{2}&0\\ \alpha+1&1\end{bmatrix}$
As $A^{2}=B,$ we get $\alpha^{2}=1$ and $\alpha+1=3 \Rightarrow \alpha=\pm 1$ and $\alpha=2 .$ This is not possible.