Thank you for reporting, we will resolve it shortly
Q.
If $A=\begin{bmatrix}a & b \\ c & d\end{bmatrix}$ satisfies the equation $x^2+k=0$, then -
Matrices
Solution:
$|A-\lambda I|=0 \Rightarrow\begin{vmatrix}a-\lambda & b \\c & d-\lambda\end{vmatrix}=0$
$\Rightarrow \lambda^2-\lambda(a+d)+a d-b c=0$
This is characteristic equation. Comparing with given equation we get
$k = ad - bc =| A |, \,\,\, a + d =0$