Thank you for reporting, we will resolve it shortly
Q.
If $A=\begin{bmatrix}a b & b^2 \\ -a^2 & -a b\end{bmatrix}$, then $A^2$ is equal
Matrices
Solution:
$A^2 =\begin{bmatrix}
a b & b^2 \\
-a^2 & -a b
\end{bmatrix}\begin{bmatrix}
a b & b^2 \\
-a^2 & -a b
\end{bmatrix}$
$ =\begin{bmatrix}
a^2 b^2-a^2 b^2 & a b^3-a b^3 \\
-a^3 b+a^3 b & -a^2 b^2+a^2 b^2
\end{bmatrix}=O$