Thank you for reporting, we will resolve it shortly
Q.
If $A = \begin{bmatrix}6&8&5\\ 4&2&3\\ 9&7&1\end{bmatrix} $ is the sum of a symmetric matrix B and skew-symmetric matrix C, then B is
Matrices
Solution:
If $A = \begin{bmatrix}6&8&5\\ 4&2&3\\ 9&7&1\end{bmatrix} $ is the sum of a symmetric
matrix B and skew symmetric matrix C,
Transpose of $A = \begin{bmatrix}6&4&9\\ 8&2&7\\ 5&3&1\end{bmatrix}$
So that $B = \frac{1}{2} \left[\begin{bmatrix}6&8&5\\ 4&2&3\\ 9&7&1\end{bmatrix} + \begin{bmatrix}6&4&9\\ 8&2&7\\ 5&3&1\end{bmatrix}\right] $
$B = \frac{1}{2} \begin{bmatrix}12&12&14\\ 12&4&10\\ 14&10&2\end{bmatrix} = \begin{bmatrix}6&6&7\\ 6&2&5\\ 7&5&1\end{bmatrix}$