Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\begin{vmatrix}a&5x&p\\ b&10y&5\\ c&15z&15\end{vmatrix} = 125$, then find the value of $\begin{vmatrix}3a&3b&c\\ x&2y&z\\ p&5&5\end{vmatrix}$

Determinants

Solution:

$\begin{vmatrix}3a&3b&c\\ x&2y&z\\ p&5&5\end{vmatrix} = \begin{vmatrix}3a&x&p\\ 3b&2y&5\\ c&z&5\end{vmatrix}$ [changing rows intocolumns]
$= \frac{1}{3} \begin{vmatrix}3a&x&p\\ 3b&2y&5\\ 3c&3z&15\end{vmatrix} = \frac{3}{3}\times\frac{1}{5} \begin{vmatrix}a&5x&p\\ b&10y&5\\ c&15z&15\end{vmatrix} = \frac{1}{5}\left( 125\right) = 25$