Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ |\overrightarrow{a}|=5,|\overrightarrow{b}|=6 $ and $ \overrightarrow{a}.\overrightarrow{b}=-25, $ then $ |\overrightarrow{a}\times \overrightarrow{b}| $ is equal to

KEAMKEAM 2010Vector Algebra

Solution:

Given, $ |\overrightarrow{a}|=5,|\overrightarrow{b}|=6,\overrightarrow{a}.\overrightarrow{b}=-25 $
$ \therefore $ $ \cos \theta =\frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}|.|\overrightarrow{b}|}=\frac{-25}{5\times 6}=-\frac{25}{30}=-\frac{5}{6} $
$ \therefore $ $ \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }=\sqrt{1-\frac{25}{36}} $
$=\sqrt{\frac{11}{36}} $
$ \therefore $ $ |\overrightarrow{a}\times \overrightarrow{b}|=|\overrightarrow{a}|\,|\overrightarrow{b}|\sin \theta | $
$=5\times 6\times \sqrt{\frac{11}{36}} $
$=5\sqrt{11} $