Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ |\vec{a}| = 2,\,\,|\vec{b}| = 5 $ and $ |\vec {a} \times {b} | = 8, $ then $\vec {a} \cdot \vec {b} $ = ?

J & K CETJ & K CET 2013Vector Algebra

Solution:

Given, $ |a|=2,\,\,|b|=5 $
$ \because $ $ a\times b=|a|\,|b|\,\sin \,\theta .n $
$ \Rightarrow $ $ |a\times b|=|a|\,\,|b|\,\sin \theta .1 $
$ (\because \,\,|n|=1\,) $
$ \Rightarrow $ $ 8=2\times 5.\sin \theta $
$ [\because \,\,|a\times b|\,=8\,\,(given)] $
$ \Rightarrow $ $ \sin \,\theta =\frac{4}{5} $
$ \therefore $ $ \cos \,\,\theta =\sqrt{1-{{\left( \frac{4}{5} \right)}^{2}}}\,=\sqrt{\frac{9}{25}}=\frac{3}{5} $
Now, $ a\,.\,b\,\,=\,|a|\,|b|\,\,cos\,\theta $
$ \Rightarrow $ $ a\,.\,b=2\times 5\times \frac{3}{5}=6 $