Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (a2 a3/a1 a4)=(a2+a3/a1+a4)=(3(a2-a3)/a1-a4), then a1, a2, a3, a4 are in
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $\frac{a_2 a_3}{a_1 a_4}=\frac{a_2+a_3}{a_1+a_4}=\frac{3\left(a_2-a_3\right)}{a_1-a_4}$, then $a_1, a_2, a_3, a_4$ are in
Sequences and Series
A
AP
B
GP
C
HP
D
none of these
Solution:
$ \frac{a_1+a_4}{a_1+a_4}=\frac{a_2+a_3}{a_2 a_3}$
$ \Rightarrow \frac{1}{a_1}+\frac{1}{a_4}=\frac{1}{a_2}+\frac{1}{a_3} $........(1)
$ \text { also } \frac{a_1-a_4}{a_1 a_4}=\frac{3\left(a_2-a_3\right)}{a_2 a_3}$
$\Rightarrow \frac{1}{a_4}-\frac{1}{a_1}=3\left(\frac{1}{a_3}-\frac{1}{a_2}\right)$.......(2)
by (1) & (2) $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \frac{1}{a_4}$
Hence $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \frac{1}{a_4}$ are in $AP$
$\Rightarrow a_1, a_2, a_3, a_4$ are in HP