Q. If $ {{a}_{1}},{{a}_{2}},....,{{a}_{n}},... $ are in GP and $ {{a}_{1}}>0 $ for each $i$, then determinant $ \Delta =\left| \begin{matrix} \log \,{{a}_{n}} & \log {{a}_{n+2}} & \log {{a}_{n+4}} \\ \log {{a}_{n+6}} & \log {{a}_{n+8}} & \log {{a}_{n+10}} \\ \log {{a}_{n+12}} & \log {{a}_{n+14}} & \log {{a}_{n+16}} \\ \end{matrix} \right| $ is equal to:
Bihar CECEBihar CECE 2006
Solution: