Q.
If $a_1, a_2, a_3, \cdots, a_n$ is an arithmetic progression with common difference $d$, then the value of the expression,
$\tan \left[\tan ^{-1}\left(\frac{d}{1+a_1 a_2}\right)\right. +\tan ^{-1}\left(\frac{d}{1+a_2 a_3}\right)$
$ \left.+\cdots+\tan ^{-1}\left(\frac{d}{1+a_{n-1} a_n}\right)\right]$ is
Inverse Trigonometric Functions
Solution: