Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If A=(1/2)[1 √3 -√3 1], then :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $A=\frac{1}{2}\begin{bmatrix}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{bmatrix}$, then :
JEE Main
JEE Main 2023
Matrices
A
$A ^{30}- A ^{25}=2 I$
22%
B
$A ^{30}= A ^{25}$
6%
C
$A ^{30}+ A ^{25}- A = I$
63%
D
$A ^{30}+ A ^{25}+ A = I$
8%
Solution:
$A =\frac{1}{2}\begin{bmatrix}1 & \sqrt{3} \\ -\sqrt{3} & 1\end{bmatrix}$
$A=\begin{bmatrix} \cos 60^{\circ} & \sin 60^{\circ} \\ -\sin 60^{\circ} & \cos 60^{\circ} \end{bmatrix}$
If $A=\begin{bmatrix}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{bmatrix}$ Here $\alpha=\frac{\pi}{3}$
$A^2=\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}\begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$
$=\begin{bmatrix} \cos 2 \alpha & \sin 2 \alpha \\ -\sin 2 \alpha & \cos 2 \alpha \end{bmatrix}$
$A^{30}=\begin{bmatrix} \cos 30 \alpha & \sin 30 \alpha \\ -\sin 30 \alpha & \cos 30 \alpha \end{bmatrix}$
$ A ^{30}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}= I$
$A^{25}=\begin{bmatrix}\cos 25 \alpha & \sin 25 \alpha \\ -\sin 25 \alpha & \cos 25 \alpha\end{bmatrix}=\begin{bmatrix}\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{-\sqrt{3}}{2} & \frac{1}{2}\end{bmatrix}$
$ A ^{25}= A $
$ A ^{25}- A =0$