Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$ and $A^{64}=\begin{bmatrix} 1 & 2^{\lambda } \\ 0 & 1 \end{bmatrix}.$ Find the value of $\lambda .$

NTA AbhyasNTA Abhyas 2022

Solution:

$A=\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$
$\Rightarrow A^{2}=\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
$A^{3}=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & \frac{3}{2} \\ 0 & 1 \end{bmatrix}$
Similarly,
$A^{64}=\begin{bmatrix} 1 & \frac{64}{2} \\ 0 & 1 \end{bmatrix}$
$\Leftrightarrow A^{64}=\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}$
$\Rightarrow 2^{\lambda }=32=2^{5}$
$\Rightarrow \lambda =5$