Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix}1&1\\ 1&1\end{bmatrix}$ then $A^{100} ;$

Matrices

Solution:

Let $A=\begin{bmatrix}1&1\\ 1&1\end{bmatrix}$
$A^{2}=\begin{bmatrix}1&1\\ 1&1\end{bmatrix}\begin{bmatrix}1&1\\ 1&1\end{bmatrix}=2\begin{bmatrix}1&1\\ 1&1\end{bmatrix}=2A$
$A^{3}=2^{2}\begin{bmatrix}1&1\\ 1&1\end{bmatrix}, A^{4}=2^{3}\begin{bmatrix}1&1\\ 1&1\end{bmatrix}$
$A^{3}=2^{2}\,A$
$A^{4}=2^{3}\,A$
$\therefore A^{n}=2^{n-1}\begin{bmatrix}1&1\\ 1&1\end{bmatrix} \Rightarrow A^{100}=2^{100-1}\,A$
$\therefore A^{100}=2^{99}\,A$