Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A=\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}$ and $B=\ldots$ then $A B=B A$ where $B \ne I$.

Gujarat CETGujarat CET 2018

Solution:

$A=\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}$ let $B=\begin{bmatrix}x & z \\ y & w\end{bmatrix}$
$A B=B A$
$\Rightarrow \begin{bmatrix}x+y & z+w \\ y & w\end{bmatrix}=\begin{bmatrix}{ll}x & x+z \\ y & w+y\end{bmatrix}$
$x+y=x \Rightarrow y=0$
$x=w$
$\Rightarrow B=\begin{bmatrix}x & z \\ 0 & x\end{bmatrix}$