Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}$ and $A^8 = aA +bI,$ then $(a , b) = $

COMEDKCOMEDK 2015Matrices

Solution:

We have, $A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix}$
$A^2 = A . A = \begin{bmatrix}1&0\\ 1&1\end{bmatrix} \begin{bmatrix}1&0\\ 1&1\end{bmatrix} = \begin{bmatrix}1&0\\2&1\end{bmatrix}$
$A^3 = A^2 . A = \begin{bmatrix}1&0\\2&1\end{bmatrix} \begin{bmatrix}1&0\\ 1&1\end{bmatrix} = \begin{bmatrix}1&0\\ 3&1\end{bmatrix}$
Similarly , $ A^8 = \begin{bmatrix}1&0\\8 &1\end{bmatrix}$
Now, $ A^8 = aA + bI$
$ \Rightarrow \:\:\: \begin{bmatrix}1&0\\ 8 &1\end{bmatrix} = a \begin{bmatrix}1&0\\ 1&1\end{bmatrix} + b \begin{bmatrix}1 &0\\ 0 & 1\end{bmatrix}$
$ \Rightarrow \:\:\: \begin{bmatrix}1&0\\ 8&1\end{bmatrix} = \begin{bmatrix} a+ b &0\\ a & a+b \end{bmatrix}$
$ \therefore \:\:\:\: a = 8 $ and $a + b = 1 \:\: \Rightarrow \: b = 1 - 8 = - 7$